Interactive Multiobjective Optimization from a Learning Perspective

نویسندگان

  • Valerie Belton
  • Jürgen Branke
  • Petri Eskelinen
  • Salvatore Greco
  • Julián Molina Luque
  • Francisco Ruiz
  • Roman Slowinski
چکیده

Learning is inherently connected with Interactive Multiobjective Optimization (IMO), therefore, a systematic analysis of IMO from the learning perspective is worthwhile. After an introduction to the nature and the interest of learning within IMO, we consider two complementary aspects of learning: individual learning, i.e., what the decision maker can learn, and model or machine learning, i.e., what the formal model can learn in the course of an IMO procedure. Finally, we discuss how one might investigate learning experimentally, in order to understand how to better support decision makers. Experiments involving a human decision maker or a virtual decision maker are considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactive Multiobjective Evolutionary Algorithms

This chapter describes various approaches to the use of evolutionary algorithms and other metaheuristics in interactive multiobjective optimization. We distinguish the traditional approach to interactive analysis with the use of single objective metaheuristics, the semi-a posteriori approach with interactive selection from a set of solutions generated by a multiobjective metaheuristic, and spec...

متن کامل

Decision-Making in Complicated Geometrical Problems

Due to increasing the number of decision-making criteria in today's ever complicated geometrical optimization problems, the traditional multiobjective optimization approaches, whether a priori, a posteriori or interactive's, found to be insufficient and ineffective. In this paper the drawbacks of the current algorithms are reviewed and the urgent need for inserting a learning componen...

متن کامل

Implementation aspects of interactive multiobjective optimization for modeling environments: the case of GAMS-NIMBUS

Interactive multiobjective optimization methods have provided promising results in the literature but still their implementations are rare. Here we introduce a core structure of interactive methods to enable their convenient implementation. We also demonstrate how this core structure can be applied when implementing an interactive method using a modeling environment. Many modeling environments ...

متن کامل

Dominance-Based Rough Set Approach to Interactive Multiobjective Optimization

In this chapter, we present a new method for interactive multiobjective optimization, which is based on application of a logical preference model built using the Dominance-based Rough Set Approach (DRSA). The method is composed of two main stages that alternate in an interactive procedure. In the first stage, a sample of solutions from the Pareto optimal set (or from its approximation) is gener...

متن کامل

Introduction to Multiobjective Optimization: Interactive Approaches

We give an overview of interactive methods developed for solving nonlinear multiobjective optimization problems. In interactive methods, a decision maker plays an important part and the idea is to support her/him in the search for the most preferred solution. In interactive methods, steps of an iterative solution algorithm are repeated and the decision maker progressively provides preference in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008